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Abstract—In this paper, a protection scheme for fault detection, 

classification, and location in non-homogenous HVDC lines is 

presented based on the rate of change of voltage (ROCOV) signal 

attained from a single end by applying a wavelet-based signal 

processing tool named MODWT. The fault features extracted by 

MODWT are applied to a general regression neural network 

(GRNN) to estimate fault location. The performance of the 

proposed scheme is evaluated against different scenarios including 

fault parameter variations such as type, resistance, and location, 

processing parameter variations e.g. sampling frequency, noise, 

and ultimately topologic variations of non-homogenous 

transmission lines. Altogether, analyzing the results approves the 

efficacy of the proposed scheme in case of robustness, 
identification time, and noisy condition.  

Keywords-component; Non-homogenous HVDC line; MODWT; 

GRNN;fault detection, classification and location 

I.  Introduction  

High-voltage direct current (HVDC) transmission systems 
have been developing significantly as a reliable alternative to the 
alternating current transmission systems. The reason for this 
development is HVDC systems’ unrivaled advantages over the 
traditional AC networks, such as their lower losses [1, 2]. On the 
one hand, new infrastructures have been developed to exploit 
renewable energy sources, such as offshore wind farms. Also, 
there are numerous advantages in using HVDC lines instead of 
the traditional HVAC lines in connecting these renewable 
sources to the power grid, which are concerned with 
sustainability considerations. All of these strengths have led to 
the burgeoning market of this technology [3]. On the other hand, 
the employment of these systems faces many challenges in terms 
of control, protection, etc. The protection of these networks 
against DC lines short-circuit faults is regarded as one of the 

                                                        
1Multi-terminal HVDC (MTDC) 

major challenges in this field. This challenge refers to the low 
inductance of these lines compared with AC lines, which leads 
these networks to suffer a rapid voltage drop and a sudden 
increase of the fault current in some milliseconds, at the time of 
a fault occurrence [4, 5]. 

In the past few decades and with the increase in utilizing 
multi-terminal HVDC networks1, another major protection 
challenge in these networks has been the use of combined 
underground or submarine cable lines and overhead lines. These 
lines are generally utilized to connect offshore wind farms, as in 
some cases the converter’s location is - for various reasons - far 
from the coast, which requires the use of an aerial network [6]. 
Currently, a limited number of combined lines, such as Basslink 
and Anan-Kihoku,  are used in Australia and Japan, respectively 
[7]. Among from the main challenges, there is the lines' 
characteristic impedance change at the junction of the overhead 
lines and cables. This results in the breaking of traveling and 
returning waves, because the characteristic impedance and speed 
of travelling waves are higher in overhead lines. And 
consequently, a large proportion of the travelling waves emitted 
is weakened when entering the cable, and returns to the overhead 
line [8]. 

Few studies have been conducted on the protection of 
combined lines, which mostly focus on fault location. 
Impedance methods, artificial intelligence, traveling waves, and 
signal processing are among the main methods in this field. 

In reference [9], identification of the faulty part of the cable 
or overhead line is done by modeling the error types and 
examining the difference in their dynamic behaviors. In 
reference [7], through writing KVL relations in the fault loop 
and  measuring the voltage of the sides of the smoothing reactor, 
a method is provided to identify and classify errors. One of the 
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shortcomings of this method is the use of the imprecise RL line 
model and its ignorance of stray capacitors along the cable lines, 
which causes a lower level of accuracy. However, the low 
sampling frequency is one of the strengths of this method. 

In reference [8, 10], fault identification and location in 
combined lines are conducted through measuring the arrival 
time of the mobile waves' front, emitted when there is a fault in 
each terminal. In this protection plan, the continuous wavelet 
transform method is used to identify the wave front. One of the 
greatest weaknesses of this method is its high sampling 
frequency up to 2 MHz  In reference [11], voltage signal 
decomposition into air and ground modes with a process similar 
to the previous references has aided the fault location in a 
combined line. In reference [12, 13], a method for locating the 
fault in combined lines is presented by measuring the difference 
in the value of the round trip wave, explicating the mathematical 
relations ruling these traveling waves, and solving the equations 
with the PSO algorithm. Reference [14] detects the fault in a 
combined line by suggesting a graph-based mathematical model 
for the network and using the traveling waves theory. 

The differential protection method was also employed in 
references [15, 16] to identify and locate the fault in combined 
lines. In reference [15], fault detection and location were done 
by measuring the current and voltage at the junctions of the 
overhead line and submarine cable by optical sensors. However, 
the implementation of this method is prone to some challenges, 
as there is need for multiple sensors and the simultaneous 
sending of signals for identification in the minimum time. 

In this paper a novel fault detection, classification and 
location scheme is proposed according to a variant of DWT with 
some interesting features. The location step of proposed scheme 
is carried out by a machine learning tool named general 
regression neural network. The main contributions of proposed 
method are as follows: 

 Faster fault detection compared with other wavelet-based 
protection scheme 

 Enable to detect classify and locate fault in both hybrid and 
pure DC link with single-end voltage sample 

 Appropriate performance in noise condition  

 Enable to detect faults up to 200Ω 

 The sampling frequency of the proposed scheme is lower 
than other wavelet-based methods 

II. Problem statement 

To investigate the impact of non-homogenous lines in 
comparison with pure OHL or UGC lines, a comparative 
simulation with different DC links is carried out as shown in 
Fig.1. Ultimately, the fault behavior is illustrated in Fig. 2. 

 

Figure 1.Fault analysis in different DC link (a)underground cable, (b) 
overhead line, (c)hybrid cable and overhead line 

 

 

Figure 2.Fault behavior in PN fault at 40 and 160 km of line in pure OHL, 
pure UGC and hybrid transmission line 

As seen in Fig. 2, the fault behavior in hybrid line could be 
different from pure lines due to the propagation velocity 
difference in UGC and OHL. Also the fault location and 
threshold setting is challenging in mixed line. 

III. Proposed method 

The proposed protection scheme consists of three steps 
illustrated in Fig. 3. These three steps which are detection, 
classification and location, are explained in following parts: 
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Figure 3.Flowchart of proposed protection scheme 

A. Detection 

The first step of all signal processing-based methods is 
receiving data from measurement devices. The voltage sample 
of both poles is selected for data analysis in this scheme due to 
the less sensitivity in fault loop impedance variation compared 
with the current signal. Also, appropriate discrimination of fault 
features in all protection studies is the utilization of the rate of 
change of voltage signal (ROCOV) as input data. This is 
attributed to its negligible value under normal conditions. As 
shown in Fig. 3, the MODWT is applied for signal 
decomposition. The use of MODWT aims to discern the 
frequency attributes of the ROCOV signal. Similar to the DWT, 
MODWT has the capability to sequentially break down the input 
signal into high- and low-frequency coefficients. Each level of 
decomposition corresponds to a distinct frequency band. As a 
result, this method enables the extraction of pertinent and 
essential frequency information. Also, for better discrimination, 
the energy of MODWT is used for fault index definition. It is 
worth mentioning that, the sensitivity of single wavelet energy 
to system fluctuations, including noise phenomenon, 
underscores the need for a moving average energy window. This 
window, determined by consecutive samples, proves beneficial 
in enhancing the robustness of the index. The proper 

decomposition level for feature extraction is according to the 
kurtosis index introduced in reference [17]. Furthermore, the 
threshold value is calculated according to the weakest internal 
fault (high resistance far end) and the most severe external fault 
in the DC and AC bus. In this paper, the selected threshold 
considering the reliability factor equals 12. Also, the 4th 
decomposition level is considered as the best frequency band for 
fault feature extractions. The performance of the proposed fault 
detection index in far-end PG and solid external PN faults is 
shown in Fig 4 

B. Classification 

Following the fault detection based on the specified 
threshold values, fault type classification proceeds by 
computing the ROCOV ratio of the positive pole to the 
negative pole in a data window. To compute boundary values 
for distinguishing various fault types, the weakest fault, 
occurring at the end of the transmission line with the highest 
fault resistance, is employed. For example, the study revealed 
that during a far end 200Ω PG fault, the average of 
ROCOVp/ROCOVn index over a data window equals 1.5. It's 
important to note that this index nearly equals 1 during a PN 
fault due to the symmetry in the transient behavior of each 
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pole. Fig. 5 illustrates changes in the selected index for 
different fault types at various locations and with different 
resistances in the line. 

 

Figure 4.PG fault with 200Ω fault resistance at 200 km and external PN 
fault with 0.1 Ω at DC bus (a),(b)pole's voltage (c),(d)MAEIp 

C. Location 

After attaining some useful features extracted from single-
end data, a machine learning tool is applied for estimating 
fault location. In this paper the generalized regression neural 
network is applied for the fault location step. 

The generalized regression neural network (GRNN) is adept 
at approximating both linear and nonlinear relationships 
between input and output variables, utilizing a radial basis 
layer and a unique linear layer for real-time operation with 
sparse data. Unlike other learning methods, GRNN's 
learning process doesn't involve an iterative tuning 
approach, allowing for nearly instantaneous completion. 
With a structure comprising input, hidden, summation, 
division, and output layers, GRNN employs normalized 
Gaussian kernels in the hidden layer [19]. As a single-pass 
network, GRNN memorizes unique patterns during training 
and, without the need for back-propagation, can generalize 
for new inputs, demonstrating efficiency in function 
approximation. The architecture of GRNN is shown in Fig. 
6. 

 

Figure 5.Classification index comparison in different fault type, 
resistance and location 
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Figure 6.The architecture of GRNN 

After evaluating the result of the detection and classification 
steps, it is concluded that the peak of MAEI both poles, arrival 
time, and classification index could be considered as four main 
features for training GRNN. For this purpose, the DC voltage of 
both poles is acquired at the rectifier side by using a sampling 
rate of 20kHz. For instance, as illustrated in Fig. 6, the 
architecture of the GRNN, signifies 3 neurons in the input layer, 
4 neurons in the hidden layer, and 1 neuron in the output layer. 
It's important to emphasize that the fault location function is 
conducted offline, making it straightforward for implementation 
and application in real-world applications. A precise fault 
location function proves highly valuable, enabling operators to 
direct the maintenance team accurately, thereby reducing repair 
time, lowering maintenance costs, and enhancing utility 
reliability indices. 

To generate input patterns for the ANN training process, 1212 
fault cases are simulated with fault parameters variation as 
presented in Table. 1. 

Table 1.Parameters to build training data for GRNN 

Fault 

type 

Fault 

resistance(Ω)  

Fault Location 

(km) 

NG 

PG 

PN 

0.01 

10 

100 

200 

0, 2, 4, 6 

…, 198, 200 

 

After training process, the generalization process is started 
investigate the accuracy of method. The estimation accuracy is 
evaluated by the percentage error calculated as: 

%𝐸𝑟𝑟𝑜𝑟 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑙𝑖𝑛𝑒
× 100 (1) 

In this part, 90% of data are considered for training and the 
remained 10% for validating the result. 

IV. Results and discussions 

In this section, the performance of the proposed protection 
scheme is investigated with various fault scenarios. Also, the 
impact of fault parameters, signal processing factors, and grid 
topology on the accuracy of fault identification is analyzed.  

A. 4-Terminal MMC-HVDC grid 

The simulated symmetrical monopole half-bridge MMC-
HVDC grid [18] is illustrated in Fig. 7. The detailed 
specification of this 320kV MTDC system is presented in Table 
2. Additionally, for precise modeling of the fault behavior, the 
frequency-dependent model for cables and overhead lines, as 
illustrated in Figure. 8, has been used. It's worth noting that all 

fault scenarios (F1 to F9) on transmission line 13 were simulated 
at the instant of 0.7 seconds. 

 

 

Figure 7.four terminal MTDC system 

 

 

Figure 8. (a)Cable model, (b)overhead line model 
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Table 2.4-terminal MMC-HVDC grid specification 

Parameters 
Value Value 

Conv. 1,2,3 Conv. 4 

DC voltage 320 kV 320 kV 

Nominal AC voltage (LL) 400 kV 400 kV 

Nominal power 900 MVA 1200 MVA 

Smoothing reactor (each pole) 150 mH 150 mH 

Type of Cable 320 kv XLPE-insulated 

Model of cable Frequency-dependent 

Sampling frequency 50 kHz 

B. Influence of fault type, resistance and location 

In order to evaluate the impact of fault parameters on the 
proposed protection scheme, various fault scenarios are 
implemented. Fig. 9 shows the impact of fault location in both 
UGC and OHL. As seen in Fig. 9, when the fault distance from 
the relay location increases, the arrival time of fault waves will 
increase, too. Thus, the detection time will be more in far-end 
faults compared with close-in faults. 

 

Figure 9.Impact of fault location in NG fault with 200Ω 
resistance,(a)voltage of negative pole, MAEIn in (b)0 km, (c)80 km, 

(d)140 km, and  (e) 200km 

Also, the influence of fault type and resistance is presented 
in Table 3. As seen in Table 3, the PN faults have more sever 
faulty behavior leading to more energy coefficient value and less 
fault detection time. 

Table 3.Impact of fault type and resistance 

Scena

rios 

Fault 

type 

Fault 

resistance(Ω)  

Fault 

Location 

MAEIn ROCOVp/

ROCOVn 

1 NG 0.1 200 km 750 0.14 

2 NG 10 200 km 430 0.4 

3 NG 100 200 km 43 0.51 

4 NG 200 200 km 15 0.59 

5 PN 0.1 200 km 990 0.95 

6 PN 10 200 km 770 0.98 

7 PN 100 200 km 167 0.99 

8 PN 200 200 km 65 0.99 

Also, the impact of fault distance on GRNN fault location is 

evaluated and the result shown in Fig. 10. The observed average 

error of estimated fault location equals 0.319% which is 

appropriate in a non-homogenous line due to the more 
complicated fault behaviors.  

 
Figure 10.The performance of GRNN in fault location 

 

C. Influence of noise and sampling frequency 

In order to ensure the applicability of the proposed protection 
scheme with various measurement technologies and non-
ideality, its performance is investigated in different white 
Gaussian noise contamination as shown in Fig. 11. It is 
concluded that up to 15 dB of noise the proposed scheme could 
thoroughly detect the fault occurrence. 

 

Figure 11.Impact of noise in NG fault with 200Ω resistance,(a)40dB, (b) 
30dB, (c) 20dB,  and  (d)15dB 
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Also the impact of noise and sampling frequency on the 

accuracy of protection scheme in NG fault at the end of 
transmission line with 200Ω resistance is presented in Table 4. 

Table 4.Impact of  sampling freqeuncy 

Scena

rios 

Fault 

type 

Fault 

resistance(Ω)  

Sampling 

frequency 

MAEIn output 

1 NG 200 100 21 Detected 

2 NG 200 50 18 Detected 

3 NG 200 20 16 Detected 

4 NG 200 10 7 Not 

detected 

D. Influence non-homogenous line topology 

In hybrid non-homogenous line, it is necessary to investigate 
impact of topologic variation. Therefore, some possible 
topologies (shown in Fig. 12) which could influence on 
protection scheme performance are considered and the results of 
simulation presented in Table 5. 

 

Figure 12.Topology variations of non-homogenous transmission lines 

Table 5.Impact of Topology variations on protection scheme 

Scena

rios 

OHL 

length

(km) 

UGC 

length

(km) 

Detection 

accuracy 

(%) 

Classification 

accuracy 

(%) 

Location 

accuracy 

(%) 

a 100 100 100 100 98 

b 180 20 100 100 98.2 

c 50 50 100 100 99.03 

d 20 180 100 100 94.4 

e 150 150 100 100 96.7 

f 100 50-50 97 100 83.2 

g 100 100 100 100 98 

h 50-50 100 100 100 86.4 

V. Conclusion 

This paper presented a single-ended protection scheme for 
non-homogenous HVDC line fault detection, classification, and 
location. The proposed scheme which integrates the MODWT 
and GRNN, extracts the four useful features from detection and 
classification steps to train GRNN for accurate fault location 
estimation. The main remarkable findings of the proposed 
schemes are as follows: 

 Less detection time compared with DWT even with low 
sampling frequency (20 kHz) 

 Fault detection capability up to 200Ω fault resistance 

 Less than 0.5% error in fault location estimation using 
GRNN in more than 95% of simulation cases. 

 Appropriate performance in noisy conditions (up to 
SNR=30dB) 
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